A Styrylpyrone Dimer from the Bark of Goniothalamus leiocarpus

Qing MU 3* , Yi Neng HE 1 , Wei Dong TANG 2 , Chao Ming LI 1 , Li Guang LOU 2 , Han Dong SUN 1 , Bin XU 2 , Guo Xun YANG 3 , Chang Qi HU 3

Abstract: A dimer of styrylpyrone derivative, leiocarpin E (1), was isolated from the bark of *Goniothalamus leiocarpus*. Its structures was elucidated by means of spectral and chemical methods. The cytotoxicity of leiocarpin E against HL-60 cells was tested.

Keywords: Goniothalamus, G. leiocarpus, cytotoxicity, styryllactone, leiocarpin E.

Continuous phytochemical studies on *Goniothalamus leiocarpus* have led to the isolation of several new styryllactones, which were found to possess cytotoxic activities against several human tumor cell lines ^{1,2}. In this paper a styrylpyrone derivative, leiocarpin E (1), was reported. Its structure was elucidated as a dimer of styrylpyrone by means of spectral and chemical methods. The cytotoxicity of leiocarpin E against HL-60 cells was tested in MTT method.

The powdered stem bark of G leiocarpus (5 kg) was extracted with 95% EtOH (10 L × 3) for 72 h at rt. The alcohol solution was concentrated and then dried to give 830 g of the dark brown resin. 200g of EtOH extract was separated into three fractions by silica gel column (500 g) chromatography with CHCl₃, EtOAc and MeOH, successively. The CHCl₃ fraction (88 g) was carried out silica gel chromatography with gradient mixture of CHCl₃ and MeOH, and the crude crystals of 1 (30 mg in MeOH) was obtained in the elution of CHCl₃-MeOH (90:10).

Leiocarpin E (1) was obtained as colorless needles. The presence of δ -lactone and hydroxyl groups was showed by the absorption brands at 1707 and 3343 cm⁻¹ in the IR spectrum ⁵. ¹³C NMR data of 1 showed the presence of two styryllactone moieties ^{6,7}, including signals of two similar α , β -unsaturated δ -lactones, a mono-substituted benzene, as well as an oxygenated methine. These signals were assigned by means of ¹H, ¹H-¹H COSY and HMQC spectra of 1 (Figure 1). ¹³C NMR data of 1 indicated the presence of a bi-substituted phenyl group (B' ring) besides the mono-substituted benzyl group. The position of H-14' was appointed by the correlation between H-8' (5.17, d) and the

_

¹Phytochemistry Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

²Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200032
³ School of Pharmacy, Fudan University, Shanghai 200032

^{*} E-mail: muqing2008@sohu.com

H-14 (7.95, d), and the other positions in B'-ring were following determined by the 1 H, 13 C, HMQC, HMBC, and NOESY spectra of **1** (**Table 1**). Moreover, comparing with the carbon spectral data of goniodiol, the appearance of signal at δ 45.5 ppm, which was corresponded with the proton signal at δ 4.25 ppm (d, 9.6 Hz, H-8) in HMQC spectrum, together with the disappearing of an oxygenerated methine (70-79 ppm) revealed that C-8 (PhCH-) in **1** attached with an aromatic carbon in the another styryllactone moiety forming a dimer of styryllactones, other than with oxygen group as in goniodiol. The connecting position at aromatic ring in the dimer was established at C-10' by the correlation between H-8 and C-10', C-9' as well as C-11' in HMBC spectra. While, the obvious coupling signals between H-8' and C-7 (77.04 ppm), H-7 (4.67, dd, 9.6, 3.6 Hz) and C-8' (5.17, d, 8.3 Hz) in the HMBC spectra identified the linkage of C-7 and C-8' across an oxygen group. The only hydroxyl group in the compound **1** was therefore arranged at position of 7' by an analysis of carbon spectral data of leiocarpin E (**Figure 1**).

Table 1 ¹H and ¹³C NMR data of compound **1** and **2** (δ ppm, J Hz, in C₅D₅N)

Position	1		2	
	Н	С	Н	С
2		163.66		163.79
3	5.98 dd, 9.8, 2.4	121.05	5.98 br d, 9.5	121.08
4	6.82 m	145.85	6.82 m	146.28
5	3.10 ddt, 18.5, 12.0, 3.6;	23.66	2.94 br t, 19.0;	23.65
	2.80 ddt, 18.5, 12.0, 3.6		2.85 br t, 19.0	
6	4.49 dt, 12.0, 3.6	77.44	4.50 br d, 11.8	77.48
7	4.67 dd, 9.6, 3.6	77.04	4.84 dd, 9.6, 2.4	77.23
8	4.25 d, 9.6	45.27	4.24 d, 9.6	45.06
9		142.16		142.32
10, 14	7.15-7.31 m	129.82	7.12-7.39 m	130.33
11, 13	7.15-7.31 m	129.46	7.12-7.39 m	129.93
12	7.15-7.31 m	130.08	7.12-7.39 m	130.86
2'		164.67		163.80
3'	6.11 dd, 9.8, 2.1	120.94	6.10 br d, 10.0	120.94
4'	6.87 m	146.64	6.85 m	147.07
5'	2.64 m; 2.61 m	23.76	2.62 m	25.66
6'	5.46 dt, 12.0,3.2	79.04	5.38 br	76.62
7'	4.83 dd, 8.3, 3.2	73.81	6.50 dd, 8.0, 2.4	72.70
8'	5.17 d, 8.3	74.92	5.22 d, 8.0	71.27
9'		136.93		137.23
10'		135.71		133.71
11'	7.31 overlap	126.46	7.12-7.39 m	126.96
12'	7.17 overlap	127.72	7.12-7.39 m	127.84
13'	7.31 overlap	127.07	7.12-7.39 m	128.23
14'	7.95 d, 7.2	127.82	7.12-7.39 m	126.48
7'-OCO <u>CH</u> 3			2.03 s	20.84
7'-O <u>C</u> OCH ₃				169.80

Acetylation of **1** with Ac_2O/Py yielded a monoacetate **2** ⁸. The peak at m/z 432 [M]⁺ in the EIMS and the prominent peak at m/z 433 [MH]⁺ in the FABMS spectrum of **1** agreed with the structural elucidation. The abundance 60 % of the peak at m/z 414 [M-HOAc]⁺ in **2** proved the presence of the hydroxyl group in compound **1**, though the abundance at m/z 414 [M-H₂O] m/z in **1** was only 0.5 %. Further more, the base peaks

at m/z 305 both in **1** and **2** firmly supported the presence of the C ring, and the upfielding of chemical shifts at C-7', 8' and 6' in compound **2** approved the existence of 7'-OH.

Figure 1 Structure of leiocarpin E 1, 2 and their EIMS cleavage scheme

In the molecular model of **1**, the larger coupling constants (9.6 Hz) between H-8 and H-7 as well as the presence of NOE effect of H-8/H-7 in the NOESY spectrum arranged H-8 and H-7 as *synperiplanar*; so did H-8' and H-7' (*synperiplanar*). Meanwhile, the absence of NOE effects of H-8/H-8', H-8/H-7' and H-7/H-8', H-7' determined that H-8 and H-7 were not at the same plane with H-8' and H-7'. On the bases of goniodiol and the biogenetic consideration, the relative configuration of C-6 and C-6' were assigned as *R^{4,9}. Finally, the structure of leiocarpin E was established as **Figure 1**.

IC₅₀ value of leiocarpin E (1) was 1.2 μ g/mL against HL-60 cells, while that of the positive control cheliensisin A was 0.07 μ g/mL³.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 39770089) and the Applied and Basic Research Foundation of Yunnan province (Grant No. 97B038q).

References and Notes

- 1. Q. Mu, C. M. Li, H. J. Zhang, Chin. Chem. Lett., 1996, 7, 617.
- 2. Q. Mu, C. M. Li, H. D. Sun, Chin. Chem. Lett., 1999, 10, 135.
- 3. C. M. Li, Q. Mu, H. D. Sun, Acta Botanica Yunnanica, 1999, 20, 102.
- 4. S. K. Talapatra, K. Basu, T. D. S. Goswami, Indian Journal of Chemistry, 1985, 24B, 29.
- 5. X. P. Fang, J. E. Anderson, C. J. Chang, *Tetrahadron*, **1991**, 9751.
- 6. Q. Mu, W. D. Tang, Y. Lu, Heterocycles, 1999, 51 (12), 2969.
- 7. Leiocarpin E **1** $C_{26}H_{24}O_6$ mp 251-252°C, $UV\lambda_{max}$ nm (log ε): 204.5 (3.40); IR (KBr)v 3343 (OH), 1707, 1638, 1451, 1210, 817, 761 cm⁻¹; FABMS m/z: 433[MH]⁺; EIMS m/z (%): 433 (2) [MH]⁺, 414 (0.5) [M-H₂O]⁺, 335 (4), 305 (100), 209 (60), 115 (22), 97 (99).
- 8. 10 mg of leiocarpin C was acetylated (AC₂O-pyridine; 24h, room temp.), and the mixture was partitioned between ice water and CHCl₃. The CHCl₃ extract on concentration showed one spot one TLC and purification by chromatography afforded compound **2**. Acetatylleiocarpin E (**2**) EIMS *m/z* (%): 474 (4) [M]⁺, 414 (60) [M-AcOH]⁺, 377 (5), 317 (10), 305 (100). FABMS *m/z*: 475 [MH]⁺.
- 9. S. Wang, Y. J. Zhang, R. Y. Chen, J. Nat. Prod., 2002, 65, 835.

Received 6 January, 2003